. Employing rece llite datasets for
improved es
lative Effect and It

limate Models

Lazaros Oreopoulos, NASA-GSFC

with help from Peter Norris, Tianle Yuan, and Dongmin Lee




The problem

* Accurate estimate of the radiative effects of clouds by GCMs

* For simplicity, pick up only one quantity to define the radiative effect of clouds.
Let’s call it, the “Cloud Radiative Effect” and define it as

CRE = C[Fclr - Fovc (pc ’Tc )]
* You may recognize this as what most people still call “Cloud Radiative Forcing”
* May refer to TOA, SFC or ATM; ATM may refer to the column or individual layers

*What do we mean by “accurate”? Global mean? Zonal mean? Regional? Annual
mean? Seasonal mean? Monthly mean? Diurnal cycle?

*Can we get all the above “correct” even if the different cloud regimes and their
associated CREs are wrong (cancelling errors)

*To what level of detail do we know CRE from observations. e.g., do we know the
breakdown by cloud regime (cf. to Huang talk yesterday)?




ISCCP cloud regimes (weather states), tropics
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SW CRE (Wm™)
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SW CRE contribution (%)
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SFC vs TOA LW CRE, extended tropics
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What do we need to know in a GCM for accurate CRE from 1-D RT?

*If clouds were single layer, homogeneous, and occupied an exéQt model vertical

®
layer things would have been rather simple, one basically ne@»cloud area, vertical
location and extinction ’é‘

(4

CRE =C|F,, -F,, 6;{3]

* But clouds occupy many layers; still, to get T nd SFC CRE, perhaps the total
(vertically-projected) C,,, the total extincticband the top and base of the highest
and lowest cloud would be enough. Q

X
*For the vertical profile of ATM C@ore detail is needed

not give a unique C,, (di

*Actually, even for the TOA FC CRE more detail is needed. A profile of C does
{83nt cloud overlap)

* Clouds are horizo y heterogeneous in terms of water content (extinction). How

do the PDFs oves%p.

*Remember that RT (1-D!) calculations in a GCM are performed layer-by-layer @




Subcolumn generator and McICA
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What do we need to know in a GCM for 1-D cloudy RT (continued)

* Cloud fraction profile

* Cloud water profile

* Cloud effective particle size profile
* Cloud variability profile

* How cloud fraction overlaps

* How condensate distributions overlap

* Can GCMs produce the above realistically?
* Are there observations to validate GCMs?
* No profiles with passive

* Profiles possible with active, but there are issues




Profiles of cloud fraction
and condensate




Ice clouds from CloudSat/CALIPSO (hydrometeors vs. condensate)
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Profiles of condensate variability
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Variability (spatial) of IWC from CloudSat/CALIPSO
~170 km
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Cloud fraction overlap
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Cloud fraction overlap
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The same profile of layer cloud fraction can give different total (column) cloud fraction
Radiative impact (instantaneous) estimates have been as high as 250 Wm (high sun)

C.(Az)=aC_. (A2)+(1-a)C,  (Az)
a=a(Az,x,y,z,t)
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separation distance (km)

Observed cloud fraction overlap from radar
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Zonal alpha from CloudSat/CALIPSO

alpha, ~170 km GEOPROF-LIDAR, January 2009

12

"

10

<€

<0

Separation distance [km]

EQ

-0.9 -0.7 -0.5 0.3 -0 0.2 0.4 0.5 0.8

a(Az,x,y,Z,t)




Separation distance [km]

Zonal alpha from CloudSat/CALIPSO
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Zonal alpha from CloudSat/CALIPSO
alpha, ~170 km GEOPROF-LIDAR, January 2009
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Zonal alpha from CloudSat/CALIPSO
alpha, ~170 km DARDAR, January 2009, with rain




Zonal alpha from CloudSat/CALIPSO
alpha, ~170 km DARDAR, January 2009, no rain
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Height-dependent alpha from CloudSat/CALIPSO
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Cloud condensate overlap




Vertical overlap/correlations of condensate PDFs

¢ Less studied

e Also affects radiative transfer

e Can be expressed as linear correlations of condensate amount or rank correlations
PPH ICA

random correlation more than random correlation
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Separation distance [km]

Zonal rank correlation from CloudSat
rank correlation, ~170 km profiles GEOPROF, January 2009
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Separation distance [km]

Zonal rank correlation from CloudSat

rank correlation, ~170 km profiles GEOPROF, July 2009
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Implementation in GEOS-5 GCM




GEOS-5 global CRE
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Concluding thoughts

*Ultimate goal is for GCMs to produce observed features of CRE, including spatio-
temporal variability and breakdown by cloud regime

*Cloudy RT in GCMs can be greatly simplified using cloud generators

* Specification of cloud fields by generators requires vertical profiles of cloud
fraction, cloud condensate, variability of cloud condensate, overlap of cloud fraction,
and overlap of condensate PDFs

* Parameter specification and validation of cloud fields can now rely on observations,
although there are still challenges

* We should continue to assess how much difference the detailed specification
makes in the various GCMs with a wide range of sophistication in their cloud
schemes
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Zonal TOA LW CRF
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CRF difference (Wm™)

Zonal TOA SW CRF
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With rain




SFC vs TOA SW CRE, extended tropics

0
[oeeeeeees CRE__ =3.5238-1.086*CRE__ R=0.99783 /]
| SFC TOA _

50 [ 2]
[ 748 ]
100 | /7 ]
“c 150 [ TOA > SFC ]
3 : O.-'c') ]
© 200 [ 03 © i

n . -
W C e ]
G 250 F 0 ]
= i , SFC>TOA ]
300 [ ]
350 [ ]
400 Oj annual CRE extended tropics -

1 I 11 11 I 11 11 I 1 1 11 I 1 11 1 I 1 11 1 I 1 11 1 I 11 1 1 I 11 11
-400 -350 -300 -250 -200 -150 -100 -50 O
SW CRE TOA (Wm?)

predictably linear and not very interesting!




low RFO high RFO



